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[1] Efforts to couple mantle flow models with rheological theories of mineral deformation
typically ignore the effect of texture development on flow evolution. The fact that there are
only three easy slip systems for dislocation glide in olivine crystals leads to strong
mechanical interactions between the grains as the deformation proceeds, and subsequent
development of large viscoplastic anisotropy in polycrystals exhibiting pronounced
Lattice Preferred Orientations. Using full-field simulations for creep in dry polycrystalline
olivine at high temperature and low pressure, it is shown that very large stress and strain
rate intragranular heterogeneities can build up with deformation, which increase
dramatically with the strength of the hard slip system (included for the purpose of enabling
general deformations). Compared with earlier nonlinear extensions of the Self-Consistent
mean-field theory to simulate polycrystal deformation, the ‘‘Second-Order’’ method is
the only one capable of accurately describing the effect of intraphase stress heterogeneities
on the macroscopic flow stress, as well as on the local stress- and strain rate fluctuations in
the material. In particular, this approach correctly predicts that olivine polycrystals can
deform with only four independent slip systems. The resistance of the fourth system (or
accommodation mechanism), which is likely provided by dislocation climb or grain
boundary processes as has been observed experimentally, may essentially determine the
flow stress of olivine polycrystals. We further show that the ‘‘tangent’’ model, which
had been used extensively in prior geophysical studies of the mantle, departs significantly
from the full-field reference solutions.
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1. Introduction

[2] The Earth upper mantle is known to exhibit elastic
anisotropy, which is commonly attributed to the presence of
Lattice Preferred Orientations (LPO; acronyms used in this
paper are listed in Table 1). Such anisotropy is revealed in
recordings of seismic waves that travel through the mantle
with speeds that depend on propagation direction. The
development of LPO is due to the plastic deformation of
mantle minerals. Peridotite polycrystalline aggregates re-
spond by dislocation creep to forces associated with large-
scale convective flow. Both olivine and pyroxene exhibit an
orthorhombic crystal structure that has only a few slip
systems available for dislocation creep, which can lead to
very high viscoplastic anisotropy at the grain scale. Thus
upper mantle regions with strong seismic anisotropy (i.e.,

pronounced LPO) may also exhibit large viscoplastic an-
isotropy which would manifest itself as large differences
between flow stresses in shear and extension (leading to
viscosities that can vary typically by one or two orders of
magnitude depending on the direction of prescribed plastic
strain). Anisotropy may possibly have a large influence on
the flow in some regions of the mantle [Christensen, 1987;
Kocks et al., 1998], as was also shown for the flow of ice in
ice sheets [Mangeney et al., 1997], but the topic has
received little attention [Blackman, 2007].
[3] In this study, the impact of LPO on mantle rheological

behavior is assessed through numerical investigation of the
viscoplastic behavior of olivine (Mg, Fe)2SiO4. This min-
eral constitutes the major proportion of the upper mantle.
Olivine behavior, under pressure and temperature condi-
tions relevant for the upper mantle, is complex, see Karato
and Wu [1993] and Hirth and Kohlstedt [2003] for a review.
We focus here on its behavior in the dislocation creep
regime. Dynamic recrystallization affects both LPO devel-
opment and grain size [Zhang and Karato, 1995; Wenk and
Tomé, 1999; Bresser et al., 2001]. Upwelling flow such as
expected beneath mid-ocean ridges results in partial melt-
ing, which may reduce the viscosity and generate buoyancy
forces [Kohlstedt and Zimmerman, 1996; Braun et al.,
2000; Blackman and Kendall, 1997]. Concerning disloca-
tion creep, water fugacity has been shown to have a
significant influence on the strength of the major slip
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systems. Slip along the [001] direction is enhanced with
respect to slip along [100] by the addition of water, leading
thus to different LPO development, and strain rate increases
by a factor of 2�6 [Mackwell et al., 1985; Karato et al.,
1986; Mei and Kohlstedt, 2000; Jung and Karato, 2001].
Finally, recent experimental work at high pressure [Couvy et
al., 2004; Raterron et al., 2007] together with atomistic
simulations [Durinck et al., 2005] indicate the dominant
role of slip along [001] at pressures higher than �7 GPa.
LPO produced by these deformation mechanisms may be
consistent with seismological observations below 250 km
depth [Mainprice et al., 2005]. These processes could
modify texture/rheologic effects due to dislocation con-
trolled LPO, but a more quantitative understanding of the
latter is an important framework to develop so that the scale
of different factors can be reasonably compared in the
future.
[4] Several polycrystal plasticity models have been ap-

plied to assess LPO development in olivine polycrystalline
aggregates. The uniform stress model, used by Chastel et al.
[1993] and Dawson and Wenk [2000], does the assumption
that each grain of the polycrystal experiences uniform
stress, so that grains poorly oriented for dislocation glide
may not deform at all. This model provides a rather weak
estimate for polycrystal behavior when the strength of all
slip systems differ signficantly. It has been found in ice to
underestimate significantly the overall anisotropy for pro-
nounced LPO [Castelnau et al., 1997]. The model of Parks
and Ahzi [1990], and the kinematic model of Ribe and Yu
[1991] which has been further extended by Kaminski and
Ribe [2001], have been constructed especially to deal with
polycrystals lacking five independent slip systems, such as
olivine. The Kaminski-Ribe model has been employed in a
number recent geophysical applications, since it can be
fairly easily implemented in large-scale flow calculations,
and its predictions for simple strain paths can reproduce key
aspects of observed olivine behavior in laboratory experi-
ments, with adjustment of one or two parameters. However,
from a physical point of view, the most accurate micro-
mechanical model to date for olivine aggregates [Wenk et
al., 1991; Tommasi et al., 1999, 2000; Blackman et al.,
2002] was that based on the tangent extension of the Self-
Consistent (SC) scheme proposed by Molinari et al. [1987],
and generalized for anisotropic polycrystals by Lebensohn
and Tomé [1993]. This is the so-called ‘‘VPSC model’’ in
geophysical literature, here referred to as the tangent model
(TGT), as explained below. This scheme has often been
described as if the interaction between each grain and its
surrounding could be approximated by the interaction
between one ellipsoidal grain with the same lattice orienta-

tion as the original grain and a homogeneous equivalent
medium whose behavior represents that of the polycrystal,
taking thus advantage of the analytical solution of Eshelby
[1957] for the inclusion/matrix interaction. This reasoning
led to the conclusion that the TGT scheme implicitly
considers uniform stress and strain rate inside grains.
[5] First, this interpretation of the TGT model turns out to

be incorrect, since stress and strain rate heterogeneities
within each crystal orientation (so-called ‘‘intraphase het-
erogeneity’’) do not vanish, see Ponte Castañeda and
Suquet [1998] for a review. Next, an inconsistency in the
TGT formulation, shown by Masson et al. [2000], explains
why this approach tends to the uniform stress bound at large
stress sensitivities, a limitation already pointed out by
Lebensohn and Tomé [1993]. Following Ponte Castañeda
[1996], Masson et al. [2000] further proposed an improved
formulation (the ‘‘affine extension’’ of the SC scheme). In
addition, two other major extensions of the SC scheme for
polycrystals exhibiting nonlinear behavior have been pro-
posed in recent years, namely the variational procedure
(VAR) [Ponte Castañeda, 1991; de Botton and Ponte
Castañeda, 1995] and the second order (SO) estimate
[Ponte Castañeda, 2002a; Liu and Ponte Castañeda, 2004].
Both of them exhibit very interesting features, such as
compliance with rigorous upper bounds for the effective
potential, which are generally violated by other homogeni-
zation procedures [Gilormini, 1995]. This property ensures
a more realistic averaging of the grain behavior during
estimation of the polycrystal behavior. Applications of the
VAR procedure to polycrystals with grains having cubic or
hexagonal crystallographic structures can be found in
[Nebozhyn et al., 2001; Liu et al., 2003a].
[6] In addition to these mean-field estimates, which are

based on a statistical description of the microstructure, full-
field approaches accounting for the exact polycrystal mi-
crostructure (if known) have been proposed to compute the
fluctuation of the stress and strain rate inside grains,
together with the overall polycrystal behavior. While such
calculations are possible using the Finite Element Method
[Sarma and Dawson, 1996; Kanit et al., 2003], a numeri-
cally more efficient method based on Fast Fourier Trans-
forms (FFT) has been proposed recently [Moulinec and
Suquet, 1998], and applied to polycrystals [Lebensohn,
2001]. However, unlike mean-field approaches, the compu-
tation power required by these full-field approaches is far
too large to imagine their coupling with a large-scale
convection flow model for the upper mantle.
[7] There are two salient features in the aforementioned

studies on olivine that are worth emphasizing. First, mean-
field approaches have been applied to investigate the
development of LPO, but the associated viscoplastic anisot-
ropy of olivine aggregates has never been thoroughly
studied, although this is certainly important for mantle
convection where flow gradients are strong. Next, a chal-
lenging feature in olivine plasticity is the lack of five
independent slip systems at the grain level, which, accord-
ing to the von Mises criterion, are necessary to accommo-
date any arbitrary plastic deformation. According to
[Tommasi et al., 2000; Wenk and Tomé, 1999], the TGT
model seems to work with only the main slip systems for
olivine, providing thus only three independent systems,
which is a puzzling result. It is however worth noting that

Table 1. List of Acronyms

LPO Lattice Preferred Orientation
FFT Fast Fourier Transform
SC Self-Consistent Model
NPLCP N-Phases Linear Comparison Polycrystal
TGT Tangent Estimate
AFF Affine Estimate
VAR Variational Estimate
SO Second-Order Estimate

B09202 CASTELNAU ET AL.: MICROMECHANICAL MODELING OF OLIVINE

2 of 18

B09202



some polycrystals are able to deform with less than five
independent systems. This is the case of hexagonal poly-
crystals with grains deforming by basal and prismatic slip
only, i.e., with four independent systems [Hutchinson, 1977;
Nebozhyn et al., 2000]. However, this behavior is model-
dependent [Nebozhyn et al., 2001], its relevance for olivine
needs to be investigated explicitly.
[8] The aim of this paper is to provide new insight into

the rheological behavior of olivine polycrystals, based on
micromechanical approaches. We focus on the effect of the
lack of five independent slip system in terms of effective
behavior at the polycrystal scale, but we also investigate the
stress and strain rate distributions inside individual grains
with different crystallographic orientations. We assess the
relevance of several mean-field approaches for olivine, in
view of the eventual desire to couple more accurate
polycrystal deformation modeling with mantle convection
calculations. It must be emphasized that, in the present
work, LPO development at large strain is not investigated.
We focus on the relation between the behavior of single
grains and that of polycrystals. This work is therefore
limited to the study of the instantaneous flow stress of
polycrystals (i.e., corresponding to infinitesimal strain). For
sake of simplicity, we also only consider isotropic poly-
crystals, i.e., exhibiting a random LPO. The development of
LPO at large strain, and the subsequent evolving anisotropic
behavior at the polycrystal scale will need to be tracked
explicitly for a complete study, but this is left for future
work. Furthermore, we will not perform here a detailed
comparison to existing experimental data, which is another
difficult task beyond the scope of this paper. Extensive
experimental comparison at various pressure and tempera-
ture conditions will be investigated later. Therefore we will
consider a simple but representative constitutive relation at
the grain scale, presented in section 2. The full-field
approach based on the FFT procedure will be presented
and applied to obtain reference results on the behavior
(section 3). In section 4, a description of the main features
of several mean-field approaches based on the SC scheme
will be given, for both linear and nonlinear viscoplastic
polycrystals. The results of these SC estimates are compared
to the reference FFT solutions (section 5) and discussed in

terms of deformation characteristic of olivine polycrystals
and compared to other known materials (section 6).

2. Grain Rheological Behavior

[9] At the grain (local) scale, we consider deformation
that occurs only by dislocation creep on a given number of
slip systems. The resolved shear stress t(k) acting on a slip
system (k) is given by a projection of the local deviatoric
stress tensor s

t kð Þ xð Þ ¼ m rð Þ
kð Þ : s xð Þ ð1Þ

with m(k)
(r) the Schmid tensor expressing the orientation of the

slip system with respect to a laboratory reference frame, (r)
representing the crystal orientation at a given spatial
position x, and : denoting the product contracted on two
indices. As for the constitutive relation at the slip system
level, we use a classical power law for the slip-rate _g on
system (k)

_g kð Þ xð Þ ¼ _g0

�����
t kð Þ xð Þ
t0 kð Þ

�����
n kð Þ�1

t kð Þ xð Þ
t0 kð Þ

ð2Þ

with t0(k) a reference shear stress that expresses the
‘‘strength’’ of the system (k), n(k) the corresponding stress
sensitivity, and _g0 a reference slip-rate. Combining all
available slip systems, the local strain rate thus reads

_eeee xð Þ ¼
XK
k¼1

m rð Þ
kð Þ _g kð Þ xð Þ ð3Þ

with K the total number of slip systems.
[10] The dislocation slip systems considered here are

those used by Tommasi et al. [2000] based on experimental
results [Durham et al., 1977; Durham and Goetze, 1977;
Bai et al., 1991; Bai and Kohlstedt, 1992]. They are listed in
the first seven lines of Table 2, and illustrated in Figure 1.
Subsets of the same systems were also used in different
studies, e.g., [Wenk and Tomé, 1999; Blackman et al., 2002;
Kaminski et al., 2004], with somewhat different t0(k). These

Table 2. Slip Plane (hkl) and Orientation of the Burgers Vector

[uvw] Considered for Olivine Grains, Together With the Number of

Equivalent Systems for Each Family (k) and the Reference Shear

Stresses t0(k). The Last System of This Table is Added Only for the

Sake of Having Five Independent Slip Systems at the Grains Scale

Slip System Equiv. t0(k)
(010)[100] 1 t0
(001)[100] 1 t0
(010)[001] 1 2t0
(100)[001] 1 3t0
{011}[100] 2 4t0
{031}[100] 2 4t0
{110}[001] 2 6t0
{111}h1�10i 12a Mt0

aStrictly speaking, these twelve systems are not equivalent owing to the
orthorhombic structure of olivine crystals, but this distinction has not been
considered here.

Figure 1. Schematic representation of slip systems in
olivine single crystals.
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slip systems represent material behavior sufficiently well
that general conclusions can be drawn about grain-scale
deformation and, thus, effective polycrystal response. Easy
slip occurs in olivine along the [100] direction, whereas slip
along the [001] direction is permitted, but with a higher
resistance. These conditions are appropriate for ‘‘dry’’
crystals deformed at high temperature and low pressure.
We have chosen the same stress sensitivity n(k) = n for all
systems. This is a tendency that seems to come out of the
experimental data, but note that this may not be a general
behavior. The generally observed value, considered here, is
n = 3.5. Such a value would indicate that creep is controlled
by dislocation glide, with dislocation motion controlled by
any of a number of numerous mechanisms [Weertman,
1975]. Typical values for t0 and _g0 for conditions prevailing
in the upper mantle would be of the order of 1 MPa and
10�15 s�1, respectively.
[11] Only three of these slip systems are independent.

They allow shearing of the crystal lattice, but none of them
allow axial deformation along the a, b, or c lattice direc-
tions. These systems thus cannot accommodate an arbitrary
plastic deformation of olivine crystals, since five indepen-
dent systems are required according to the von Mises
criterion. Consequently, following the generally adopted
procedure (see Tommasi et al. [2000] and Wenk and Tomé
[1999], among others), we introduce an additional slip
family {111} h1�10i for the sole purpose of having five
independent systems at the crystal level. It should made be
clear that this mode has not been observed in olivine, and its
introduction in previous work was a purely numerical
convenience. It is generally set stiff enough so that its
influence on LPO development becomes negligible. In the
following, we will however see that, using more sophisti-
cated (and realistic) micromechanical models, as well as
more subtle indicators for the mechanical state of the
material, this artificial slip mode has a real influence on
the behavior. In the present work, the desire of this
implementation is to provide a rough representation of the
accommodation processes in real olivine, such as grain
boundary sliding or dislocation climb. The reference re-
solved shear stress for this system is given by the value ofM
(Table 2), denoted hereafter ‘‘anisotropy parameter’’, since
M expresses part of the local viscoplastic anisotropy, i.e., at
the grain scale. A high value of M corresponds to a large
difference between normal and shear viscosity, and thus to a
high anisotropy of grains. The limiting case of M ! 1 is
equivalent to removing this system, leaving the grain with
infinite normal viscosities along the a, b, and c directions
and an open yield surface. The reason for introducing this
artificial slip family and not a more physically based
accommodation mechanism is twofold. First, accommoda-
tion mechanisms in olivine are not well characterized
experimentally. Diffusion processes, grain boundary sliding,
and dislocation climb are however often evoked in the
literature. Second, there are no micromechanical models
available to date for polycrystal viscoplasticity accounting
for more sophisticated deformation processes than regular
dislocation glide on fixed lattice planes. Specific (and
probably lengthy) developments are thus required in that
field. The procedure followed here will however allow us to
assess the relevance of different homogenization methods
for olivine, and to shed light on the local mechanical state of

polycrystal of olivine deforming in the dislocation creep
regime.

3. Full-Field Computations

3.1. FFT-Based Formulation

[12] The FFT-based, full-field formulation for viscoplas-
tic polycrystals, to be used as a reference solution for
comparison with the results of statistical approaches, has
been developed for periodic unit cells. It provides a solution
of the governing equations (equilibrium and compatibility).
It was originally developed as a fast algorithm to compute
the elastic and elastoplastic effective and local responses of
composites [Moulinec and Suquet, 1994, 1998; Michel et
al., 2000] and later generalized to deal with the viscoplastic
deformation of polycrystals [Lebensohn, 2001].
[13] Briefly, the FFT-based formulation consists of find-

ing a strain rate field associated with a kinematically
admissible velocity field that minimizes the average local
work-rate under the compatibility and equilibrium con-
straints. The method is based on the fact that the local
mechanical response of a periodic heterogeneous medium
can be calculated as a convolution integral between the
Green function of a linear reference homogeneous medium
and the actual heterogeneity field. Since such integrals
reduce to a simple product in Fourier space, the Fast Fourier
Transform algorithm can be used to transform the hetero-
geneity field into Fourier space and, in turn, get the
mechanical fields by transforming that product back to real
space. An iterative scheme must be implemented to obtain,
upon convergence, a compatible strain rate field and a stress
field in equilibrium, see [Michel et al., 2000; Lebensohn et
al., 2004a] for details.

3.2. Microstructural Model

[14] In the full-field approach, the polycrystal microstruc-
ture has to be defined explicitly by specifying the arrange-
ment and crystallographic orientations of the grains.
Obviously, the reference solution provided by the FFT
method corresponds to the considered microstructure. How-
ever, the microstructure of polycrystals is essentially ran-
dom in nature (no correlation between the orientation of one
particular grain, the orientation of the neighboor grains, the
grain shape, . . .). To capture this feature, the full-field
method is used to perform a large number of computations
on randomly generated microstructures, each single micro-
structure (denoted hereafter a ‘‘configuration’’) containing a
reasonably small number of grains due to the obvious
limitation associated with the size of computer memory.
The desired results are obtained by taking an ensemble
average over all configurations [Kanit et al., 2003]. The
more grains in each configuration and the more configu-
rations considered, the more accurate the result is. To get a
quantitative estimate of the significance of the results, the
error associated with the ensemble average procedure is
evaluated according to the method described by Kanit et al.
[2003]. In all forthcoming figures, the obtained standard
deviation of results is found to be always smaller than the
size of the symbol used for the plots.
[15] The microstructures considered here are periodic

three-dimensional unit-cells, randomly generated by Voronoi
tessellation and containing 32 grains each. A typical micro-

B09202 CASTELNAU ET AL.: MICROMECHANICAL MODELING OF OLIVINE

4 of 18

B09202



structure is illustrated in Figure 2. Ensemble average has
been performed over N = 50 configurations. In order to
make the comparison with mean-field approaches more
accurate, the same crystallographic orientations for those
32 grains have been taken for all configurations. Grains
orientations have been chosen in order to approach an
isotropic behavior for the polycrystal; Euler angles have
been selected in accordance with a quasi-random Sobol
sequence [Press et al., 1992], since the so-obtained orienta-
tion distribution has been found to exhibit a better isotropy
than that given by the random orientation distribution gen-
erally used. For the FFT computations, a regular Fourier grid
of 64 
 64 
 64 points has been used to discretize the unit
cell, leading to an average of 8192 Fourier points per grain.

3.3. Representative Results

[16] The computations of mechanical behavior were per-
formed for uniaxial compression with an equivalent macro-
scopic strain rate _�eeq = _g0 where

_�eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3 _�e : _�e

q
ð4Þ

and _�eeee denotes the macroscopic strain rate tensor. In what
follows, we calculated the mechanical behavior correspond-
ing to a fixed configuration, with no evolution of the
microstructure and/or the mechanical fields. Therefore only
the instantaneous viscoplastic response of polycrystalline
olivine will be investigated.
[17] Full-field approaches can be used advantageously to

examine the distribution of the stress and strain rate within
the microstructure. A 3-D overview of the distribution of the
local equivalent strain rate _eeq (x) is given in Figure 3 for
anisotropy parameters M = 10 and M = 100, with

_eeq xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3 _e xð Þ : _e xð Þ

p
: ð5Þ

[18] First, it can be seen that strong strain localization
occurs. Strain is concentrated in bands located either within
the grains or lying along grain boundaries, as observed
experimentally in metallic aggregates [Soppa et al., 2001].
The highest strain rates are found along grain boundaries.
For M = 10, it is clear that some grains (the ‘‘soft’’ ones)
exhibit higher average strain rate than others (the ‘‘hard’’
grains), but it is worth noting that all grains deform
heterogeneously. For M = 100, the intragranular strain
heterogeneity becomes very high and dominates over the
intergranular heterogeneity. Values as high as _eeq(x) = 14 _�eeq
can be found locally. The average strain rate of each grain
depends not only on its crystal orientation, but also depends
strongly on the shape and orientation of its neighbors.
[19] To investigate these heterogeneities in more detail,

the distribution of stress and strain rate are now considered.
Figure 4 shows the probability density obtained for seq/�seq
and _eeq/ _�eeq in the softest of the 32 crystal orientations, with

seq xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2s xð Þ : s xð Þ

p
ð6Þ

and similar definition for the macroscopic counterpart �seq.
Both stress and strain rate are very heterogeneously
distributed, even for the relatively small local rheologic
anisotropy M = 10. For M = 100, the width of the
distribution is considerable. Some regions of grains do not
deform at all ( _eeq � 0) whereas other regions do deform up
to 6 � 7 times more rapidly than the macroscopic average.
The local stress exhibits similar behavior, with sometimes
very low (almost vanishing) values, and sometimes very

Figure 2. Typical periodic microstructure generated by
Voronoi tesselation. It contains 32 grains, each having a
different color that corresponds to its crystallographic
orientation.

Figure 3. Spatial distribution of _eeq/ _�eeq calculated by the FFT method for (left) M = 10 and (right)
M = 100, for the microstructure given in Figure 2. Solid lines indicate the grain boundaries (and cube
edges). The direction of uniaxial tension is vertical. Note that scales are different on both figures.

B09202 CASTELNAU ET AL.: MICROMECHANICAL MODELING OF OLIVINE

5 of 18

B09202



high values. Furthermore, the local quantities seq and _eeq
are on average significantly larger than their macroscopic
counterpart, �seq and _�eeq. For M = 100, the average of seq is
about 3 
 �seq; even in this crystal orientation favorable for
deformation, the equivalent stress within grains can be
much larger than the macroscopic value. This illustrates the
fact that individual grains are subjected to stress regimes
significantly different from the uniaxial compression
prescribed macroscopically. Similar behavior has also been
observed for the other crystal orientations, not reported here
for sake of brevity.
[20] Figure 5 shows the distributions of the resolved shear

stress t and shear-rate _g on the easiest slip system of the
same crystal orientation. Again, the large width of the
distributions, increasing with M, is noticeable. In fact, t
and _g distributions are not independent, they are linked by
the local constitutive relation (2). A remarkable result,
which is due to the nonlinearity of the behavior, is that
these distributions do not exhibit the same shape. This is
particularly evident for M = 100, where the unimodal
distribution of _g is associated with a bimodal distribution
of t. Moreover, from purely geometrical considerations,
according to the orientation of the slip system with respect

to the applied deformation rate, it is expected that the
system glides with t and _g both positive. Clearly, this is
not the case at high anisotropy parameter. This system,
which is among the softest in the whole polycrystal, slips
frequently in a direction opposite to the one expected
intuitively. This highlights the very strong influence of
neighbor grains on the local stress and strain conditions.
[21] Similar conclusions can be drawn for ‘‘hard glide’’

conditions, i.e., when the crystal orientation is such that a
given slip plane is normal to the applied macroscopic
compressive stress, leading thus to vanishing average shear
stress and shear-rate. In that case, it can be shown that the
local shear stress on that system is generally significant,
leading to local shear-rates _g up to 5 
 _g0 for M = 100 [see
also Castelnau et al., 2006]. In other words, local grain
interactions allow even unfavorably oriented slip systems to
become susceptible to significant local activation.

4. Mean-Field Estimates

[22] Unlike full-field approaches, mean-field methods are
based on a statistical description of the microstructure of the
polycrystalline aggregate. The microstructure is described

Figure 4. Distribution of normalized (left) equivalent stress and (right) equivalent strain rate, forM = 10
and M = 100, in a particular crystal orientation well oriented for slip along the easiest systems.

Figure 5. Distribution of normalized resolved (left) shear stress and (right) shear-rate, for M = 10 and
M = 100, on the easy slip system (010)[100] of the same (soft) crystal orientation as in Figure 4.
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by several n-points correlation functions, so that the exact
position and shape of one grain with respect to its neighbors
is not known. However, all grains exhibiting the same
crystallographic orientation are treated as a single ‘‘mechan-
ical phase’’, also called ‘‘crystal orientation’’ hereafter. Such
a phase thus regroups many (in fact an infinite number of)
grains of similar orientation, but with different shape and
surroundings. This procedure would correspond to ensem-
ble averaging over a sufficiently large number of FFT
configurations.
[23] Owing to the random character of the microstructure

in polycrystals with all grains playing geometrically similar
roles, the Self-Consistent (SC) scheme [Hershey, 1954;
Kröner, 1958, 1978; Willis, 1981] is especially well suited
for these materials. The SC scheme was originally developed
for materials exhibiting linear behavior. The basic method to
deal with nonlinear behavior such as viscoplasticity is to
define an ‘‘N-Phase Linear Comparison Polycrystal’’
(NPLCP) having the same microstructure as the real non-
linear polycrystal, and to which the SC scheme can be
applied in order to get the behavior of the real polycrystal.
Of course, the so-estimated effective behavior remains
nonlinear since the definition of the NPLCP depends on
the applied macroscopic strain rate. The difficult part of the
problem consists of finding the ‘‘right’’ linearization proce-
dure leading to the optimal selection of the NPLCP. In the
following, after briefly reviewing the main features of the
(linear) SC scheme, several extensions of the SC scheme for
viscoplasticity are briefly described.

4.1. Exact Solution for Linear Viscosity

[24] For reasons that will become evident in the sequel,
we deal here with materials exhibiting the following linear
behavior at the local scale

_eeee xð Þ ¼ M rð Þ : s xð Þ þ _eeee rð Þ
0 ð7Þ

with M(r) a viscous compliance and _eeee0(r) a stress-free strain
rate, which are both homogeneous in crystal orientation (r).
It is known [e.g., Ponte Castañeda and Suquet, 1998] that
the effective behavior exhibits the same form

_�eeee ¼ ~M : �sþ _~eeee0 ð8Þ

where the macroscopic stress �s and macroscopic strain rate
_�eeee are defined by the average over the whole polycrystal
volume (denoted h.i) of the corresponding local quantities

�s ¼ hs xð Þi; _�eeee ¼ h _eeee xð Þi: ð9Þ

The effective compliance ~M and the effective stress-free
strain rate _~eeee0 are given by the following exact relations

~M ¼ hM xð Þ : B xð Þi; _~eeee0 ¼ h _eeee0 xð Þ : B xð Þi ð10Þ

where B is the stress localization tensor. Since M and _eeee0 are
both uniform per phase, the knowledge of the phase
averages of B, denoted B(r), are sufficient to solve the
equation (10). For the SC scheme, which provides the exact
solution for some specific random microstructures, expres-
sions for B(r) in a general context of anisotropy can be
found, e.g., by Brenner et al. [2004].
[25] With this in hand, statistical averages over the crystal

orientations can be estimated. Basically, two quantities can
be obtained. The phase average stress (or first moment) s(r),
defined as s(r) = hsi(r) with h.i(r) the average over the
volume of crystal orientation (r), is directly related to the
stress concentration tensor

s rð Þ ¼ B rð Þ : �sþ s rð Þ
res; ð11Þ

with sres
(r) the residual stress. The knowledge of s(r) for all

crystal orientations (r) allows investigation of the so-called
‘‘interphase’’ heterogeneities, i.e., the variation of the phase
average stress with respect to the crystal orientation. Deeper
insight into the stress distribution can be obtained from the
second moment hs 
 si(r) (
 denotes the dyadic product),
which is simply the tensorial expression for the mean of the
square of the stress. It can be obtained by the method
presented by Bobeth and Diener [1987] and Kreher [1990].
Note that the variance of the stress within a given crystal
orientation can be estimated from these two quantities as
hs 
 si(r) � hsi(r) 
 hsi(r), which is related to the width of
the stress distribution in crystal orientation (r). Similar
relations can be derived for the strain rate statistics.

4.2. Approximate Solutions for Nonlinear
Viscoplasticity

[26] To generalize the SC scheme for viscoplasticity, the
local constitutive relation given by equations (1–3) has to
be linearized in a suitable way to obtain a form similar to
(7), with M(r) and _eeee0(r) uniform per phase. Generally speak-
ing, the linearization of (2) can be expressed in the form
depicted in Figure 6 [Liu and Ponte Castañeda, 2004]

_g kð Þ xð Þ ¼ a rð Þ
kð Þt kð Þ xð Þ þ _e

rð Þ
kð Þ; ð12Þ

thus leading to the following expressions for M(r) and _eeee0(r)

M rð Þ ¼
P

k a
rð Þ
kð Þm

rð Þ
kð Þ 
 m rð Þ

kð Þ

_eeee rð Þ
0 ¼

P
k _e

rð Þ
kð Þm

rð Þ
kð Þ

ð13Þ

Figure 6. Schematic representation of the linearization
(12).
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Without loss of generality, the shear compliance a(k)
(r) and

stress-free shear-rate _e(k)
(r) can be expressed with respect to

two reference shear stresses, �t(k)
(r) and t̂(k)

(r), as

a ¼ _g t̂ð Þ � _g �tð Þ
t̂ � �t

_e ¼ _g �tð Þ � a�t

ð14Þ

where subscripts (k) and (r) have been omitted for clarity,
and _g(t) denoting the shear-rate given by the nonlinear
relation (2) for the shear stress t. The optimal choice (from
the point of view of the variational mechanical problem) of
the reference stresses �t(k)

(r) and t̂(k)
(r) is not straightforward, and

this is mainly the reason why several extensions of the SC
scheme for viscoplasticity have been proposed in the
literature. Basically, these different approaches can be
distinguished by the corresponding choice of �t(k)

(r) and t̂(k)
(r).

Obviously, all of them reduce to the same SC model in the
linear case n = 1.
[27] Following Ponte Castañeda [1996], Masson et al.

[2000] proposed the so-called ‘‘affine’’ (AFF) linearization
scheme which is based on the simple and intuitive idea of a
linear behavior (12) tangent to the nonlinear one (2) at the
mean shear stress, leading to

�t rð Þ
kð Þ ¼ t̂ rð Þ

kð Þ ¼ ht kð Þi rð Þ; a rð Þ
kð Þ ¼

@ _g
@t

����
t¼�t rð Þ

kð Þ

: ð15Þ

The main limitations of this procedure are discussed in
detail by Bornert and Ponte Castañeda [1998] and Masson
et al. [2000]. One of them is the violation of rigourous
upper bounds for the effective behavior. More generally, the
affine extension is known to overestimate the overall
viscosity, i.e., to predict effective behavior that is too stiff.
This negative feature can be alleviated by means of the
energy formulation originally proposed by Ponte Castañeda
[1996] [see Bornert et al., 2001].
[28] Alternative, more sophisticated ways to generalize

the SC scheme have been proposed by Ponte Castañeda and
coworkers during the last decade. The basic idea of these
methods is to guide the choice of the properties of the
NPLCP by a suitably designed variational principle. More
precisely, the trial fields in these variational principles are
the shear compliances a(k)

(r), while the constraints of stress
equilibrium and strain compatibility are enforced through
the NPLCP.
[29] For specific classes of NPLCP, an ‘‘optimal’’ solution

has been obtained in the context of the so-called ‘‘varia-
tional’’ procedure (VAR) of Ponte Castañeda [1991], which
was extended to polycrystals by de Botton and Ponte
Castañeda [1995], leading to the choices

�t rð Þ
kð Þ ¼ 0; t̂ rð Þ

kð Þ ¼ ht2kð Þi
rð Þ

h i1=2
ð16Þ

and thus

_e
rð Þ
kð Þ ¼ 0; a rð Þ

kð Þ ¼
_g0

t0 kð Þ

�����
�t rð Þ

kð Þ

t0 kð Þ

�����
n�1

: ð17Þ

Since _e(k)
(r) = 0, this procedure can be interpreted as

‘‘generalized secant’’ linearization [Suquet, 1995]. In
addition, it has been shown to provide a rigourous bound
for the effective potential.
[30] More recently, the ‘‘second-order’’ (SO) method of

Ponte Castañeda [2002a], extended to polycrystals by Liu
and Ponte Castañeda [2004], has been proposed. It is based
on the same variational procedure as VAR, except that the
chosen NPLCP is not of the generalized secant type, but of
a generalized affine type, not requiring the _e(k)

(r) to vanish.
The original procedure consists of estimating the effective
stress potential ~U from which the effective strain rate can be
derived, _�eeee = @ ~U /@�s. The application of this method to
anisotropic polycrystals, for which the form of ~U is not
known in advance, would thus require a numerical differ-
entiation of ~U which may be rather laborious. Therefore use
is made here of an approximation of the original SO
formulation which aims at evaluating the effective behavior
directly without having to know the effective potential. This
provides slightly less accurate results than the original
formulation [Liu and Ponte Castañeda, 2004], but is much
more efficient from the computational point of view. The
reference shear stresses now read

�t rð Þ
kð Þ ¼ ht kð Þi rð Þ; t̂ rð Þ

kð Þ ¼ �t rð Þ
kð Þ � h t kð Þ � �t rð Þ

kð Þ

	 
2

i rð Þ
� �0:5

ð18Þ

where the + sign in the second equation has to be taken
when �t(k)

(r) > 0, and the - when �t(k)
(r) < 0.

[31] For practical purposes, the main differences between
AFF, VAR, and SO models may be summarized as follows.
The AFF estimate can be regarded as a relatively simple
model, allowing rapid computations which can even be
rather accurate for polycrystals with weak grain anisotropy
and small stress sensitivity. However, its predictions can
become unrealistic (e.g., bound violation) at strong anisot-
ropy or nonlinearity. The VAR and SO procedures clearly
need more numerical effort, since they both require the
computation of the second moments hs 
 si(r). The VAR
method provides a rigourous bound for the effective behav-
ior, and can therefore improve on the AFF estimate at high
anisotropy and nonlinearity. On the other hand, the SO
procedure has been constructed to provide the best estimate
of the effective behavior. In particular, by construction, it
always complies with the VAR bound. It is therefore
physically a more satisfying formulation.
[32] Finally, the ‘‘tangent’’ (TGT) extension of the SC

scheme [Molinari et al., 1987; Lebensohn and Tomé, 1993]
is based on the same tangent linearization (15) as the AFF
method. However, unlike the AFF extension, this procedure
takes advantage of the fact that, for power law polycrystals
with a single stress exponent n, the tangent behavior (12)
can be replaced by a secant-like relation, with _e(k)

(r) = 0 and
a(k)
(r) replaced by na(k)

(r). The same procedure is further applied
at the macroscopic level, leading to an inconsistent defini-
tion for the stress localization tensor B(r) that combines a
secant description for the local and global behaviors but a
tangent analysis for the inclusion/matrix interaction. When
expressed in the form of tangent expressions, it can be
shown that _~eeee0 differs from the exact relation given in (10)
[Masson et al., 2000]. It is recalled that this TGT extension
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was the most advanced micromechanical model applied to
olivine to date.

5. Results

[33] The various extensions of the SC scheme were
applied to a polycrystal made of the same 32 crystal
orientations (or mechanical phases) as used for the full-field
computations, and exhibiting the same (spherical) average
grain shape. Recall that computations have been performed
for a given effective strain rate _�eeq = _g0 under uniaxial
compression. In addition to the SC schemes, results will be
also given for the uniform stress (Static) and the uniform
strain rate (Taylor) bounds. These latter two models are
obtained by prescribing s(x) = �s and _eeee(x) = _�eeee, respectively.
They both predict homogeneous intraphase stress and strain
rate. Our strategy is to present results concerning not only
the effective behavior, but also the partitioning of stress and
strain rate in the different crystal orientations, in order to
show the levels of accuracy of the different mean-field
approaches, and to better understand the rheological behav-
ior of olivine.
[34] Figure 7 shows the equivalent effective stress �seq/t0

predicted by the TGT, AFF, VAR, and SO extensions of the
SC scheme, as a function of the anisotropy parameter M.
Results are compared to the reference solution provided by
the FFT full-field approach. First of all, it is observed that
the FFT approach indicates an effective stress increasing
continuously with M. At sufficiently large local anisotropy,
say M > 10, a rather simple scaling law is observed, with
�seq/t0 being proportional to Mk, with k ’ 0.5. The TGT
extension of the SC scheme, on the other hand, shows a
saturation of �seq/t0 still at moderate values of M (’20)
which clearly departs from the reference FFT results. Since
�seq/t0 remains finite when M ! 1, the TGT model allows
the polycrystal to deform with only three independent slip
systems. It thus behaves qualitatively like the Static bound,
but with a higher flow stress. As expected, the Taylor bound

significantly overestimates the effective stress which simply
tends to be proportional to M(k ’ 1). The AFF formulation
provides significantly better match to the full-field solution
compared to the TGT model, at no additional numerical
cost. However, the AFF flow stress increases too rapidly
with M (k ’ 0.7), and therefore the predictions become too
stiff at large M. On the other hand, the predictions of the SO
reproduce the FFT reference results almost perfectly. The
VAR estimate is not as good a match to the full-field results
as the SO prediction, being overly stiff. However, unlike all
other models, both SO and VAR extensions predict the
correct scaling with k ’ 0.5.
[35] Figure 8 shows the evolution with M of the overall

(normalized) stress and strain rate heterogeneities S(seq)/
�seq and S( _eeq)/ _�eeq, which are defined as

S seq


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2

eqi � �s2
eq

q

S _eeq

 �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _e2eqi � _�e2eq

q : ð19Þ

These quantities are related to the standard deviation of
stress and strain rate in the whole polycrystal. They
illustrate the overall heterogeneities in the polycrystal,
combining the field fluctuations inside the grains together
with the fluctuations between different grains. Note that
only normalized results are presented in Figure 8 (and also
in the forthcoming figures), with a normalization factor
depending on the considered model. For example,S(seq)/�seq
for the AFF model has been calculated using the AFF
estimate for �seq. The discrepancies concerning the effective
flow stress, already discussed above (Figure 7), have thus to
be taken into account to compare nonnormalized values
(i.e., S(seq)). However, as for S( _eeq)/ _�eeq, since the same _�eeq
has been prescribed for all models, curves showingS( _eeq)/ _�eeq
and S( _eeq) exhibit similar shapes. It can be seen in Figure 8
that, similar to the effective behavior, the full-field solution
predicts that stress and strain rate heterogeneities increase
with the anisotropy parameter M. Again, the TGT approach
exhibits a very different response, with a saturation at M
values as small as �5–10. At large M, this approach
predicts values of heterogeneities S that are very similar to
the Taylor and Static bounds for the stress and the strain
rate, respectively. (Note in passing that Static and Taylor
bounds lead to S(seq) = 0 and S( _eeq) = 0, respectively, by
construction.) Moreover, the TGT model significantly
overestimates S( _eeq)/ _�eeq for M smaller than �10. On the
other hand, the AFF, VAR, and SO estimates provides
similar trends, in good agreement with full-field results
(again, recall that we are dealing with normalized
quantities). For S(seq)/�seq, results are also very good
quantitatively. As for S( _eeq)/ _�eeq, the prediction is slightly
too large compared to full-field results. The best agreement
is obtained here for the VAR model.
[36] We now investigate the distribution of stress and

strain rate in the different crystal orientations. Figure 9
illustrates how the (normalized) average equivalent stress
seq
(r)/�seq and strain rate _eeq

(r)/ _�eeq are distributed in the different
crystal orientations, for M = 100. The quantities seq

(r) and _eeq
(r)

are the von Mises equivalent stress and strain rate, e.g.

s rð Þ
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2hsi rð Þ : hsi rð Þ

q
; ð20Þ

Figure 7. Effect of the anisotropy parameter M on the
effective stress for several extensions of the SC scheme and
compared to the reference solutions provided by the FFT
full-field modeling. Static and Taylor bounds are also
indicated.
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i.e., they express the average stress and strain rate in the
considered crystal orientation (r). Since the distributions of
seq
(r) and _eeq

(r) exhibit transverse isotropy with respect to the
macroscopic compression axis, they can be fully repre-
sented in a single inverse pole figure of the compression
axis. The lower left corner of these figures indicates values
of seq

(r)/�seq and _eeq
(r)/ _�eeq for crystal orientations exhibiting a

[001] lattice direction aligned with the macroscopic
compression axis. Similarly, the lower right corner indicates
the values in those crystals having a [100] direction aligned
with the compression axis, and so on. The reference full-
field results indicate that hard grains are those for which one
of the h001i crystal axis is aligned with the macroscopic
compression axis. These grains experience a large average
equivalent stress, up to 2.6 times larger than the macro-
scopic average �seq, and a small equivalent strain rate which
can be less than 0.4 
 _�eeq. Soft orientations correspond to
grains for which the macroscopic compression axis lies
close to the h111i crystallographic direction. The corre-
sponding grains experience small equivalent stress, which
can be as small as 0.3 
 �seq, together with a high equivalent
strain rate, up to 1.4 
 _�eeq. The predictions of the TGT
extension only roughly matches the reference full-field
results. Particularly, the amplitudes of fluctuations are not
correct, being overly small (large) for the stress (strain rate).
Also, _eeq

(r) displays excessive values for crystals with [110] or
[101] lattice direction aligned with the macroscopic
compressive axis. On the other hand, the AFF, VAR, and
SO estimates all provide excellent results, virtually indis-
tinguishable from the full-field predictions, except maybe
for a slight underestimation of _eeq

(r) for grains in the [100]
direction. Both the shape of the distribution and the range of
fluctuation are very well captured by these three ap-
proaches.
[37] Figure 10 shows the distribution of the normalized

intraphase heterogeneities of stress S(r)(seq)/�seq and strain
rate S(r)( _eeq)/ _�eeq, with

S rð Þ seq


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2

eqi
rð Þ � s rð Þ

eq

	 
2
r

ð21Þ

(and similarly for S(r)( _eeq)). These quantities reflect the
width of the stress and strain rate distribution inside a given
crystal orientation (r). Note that they vanish for both Static
and Taylor bounds since stress and strain are assumed
uniform inside grains in these models. The full-field results
indicate that both S(r)(seq)/�seq and S(r)( _eeq)/ _�eeq exhibit a
rather poor dependence on the crystal orientations, with
predicted values being almost constant and equal to about
3.4 and 2.3, respectively. The TGT approach displays a
good qualitative match to the distribution of S(r)(seq)/�seq,
also with almost constant values, but the strain rate
intraphase heteogeneity S(r)( _eeq)/ _�eeq exhibits much greater
fluctuations than the full-field prediction. In addition, this
approach significantly underestimates both heterogeneities,
the predicted values being only half those of the full-field
solution. Since �seq is rather small for the TGT model
(Figure 7), the nonnormalized value S(r)(seq) is as low as
6 times less than the FFT-based prediction. The AFF
estimate predicts globally the correct level for S(r)(seq)/�seq
and S(r)( _eeq)/ _�eeq, but the dependence on the crystal
orientation is much larger than is obtained for the full-field
method. Again, the best qualitative and quantitative
agreement is obtained for the VAR and SO estimates. The
obtained values of S(r)(seq)/�seq and S(r)( _eeq)/ _�eeq do not
depend on the crystal orientation, as anticipated. The
predicted levels are also in good agreement with the full-
field solution. The VAR procedure produces results in
perfect agreement, and the SO extension slightly over-
estimates the intraphase strain rate heterogeneity. Note
however that the VAR procedure overestimates the
nonnormalized stress fluctuation S(r)(seq).

6. Discussion

[38] In this section, we analyze the results of the previous
section with the objective of drawing some conclusions on
the relevance of mean-field approaches for micromechan-
ical modeling of olivine, the deformation mechanisms in
olivine, and the subsequent coupling of the micromechan-
ical model with a large-scale convection model for the
upper mantle.

Figure 8. Normalized heterogeneities of (left) equivalent stress and (right) equivalent strain rate as a
function of the anisotropy parameter M for several extensions of the SC scheme and compared to the
reference solutions provided by the FFT full-field modeling. Static and Taylor bounds are also indicated.
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Figure 9. Inverse pole figures of the uniaxial compression axis showing the distribution of the
normalized average equivalent (left) stress seq

(r)/�seq and (right) strain rate _eeq
(r)/ _�eeq in crystal axes, for the

FFT, TGT, AFF, VAR, and SO estimates, andM = 100. Color codes used for both quantities are shown on
top of the figure.
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Figure 10. Inverse pole figures of the uniaxial compression axis showing the distribution of the
intraphase heterogeneity of (left) stress S(r)(seq)/�seq and (right) strain rate S

(r)( _eeq)/ _�eeq in crystal axes, for
the FFT, TGT, AFF, VAR, and SO estimates, and M = 100. Color codes used for both quantities are
shown on top of the figure.
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6.1. Relevance of the Mean-Field Approaches

[39] When comparing the predictions of nonlinear exten-
sions of the SC scheme to reference results obtained by the
full-field FFT approach, there are two major sources of
discrepancy [Rekik et al., 2006]. The first source concerns
the effect of the linearization procedure. The second is
associated with the microstructures of the considered poly-
crystals. To a lesser extent, part of the discrepancy might be
also related to the unavoidable inaccuracies of the full-field
solutions at large M, due to the finite size of the FFT grid,
but this last source is believed to remain minimal here,
except maybe for the case of the strain rate fluctuations for
high values of M, in which slight inaccuracy of reference
solutions could be expected [Lebensohn et al., 2004b].
[40] The full-field simulations provides a solution for a

randomly generated Voronoi tesselation, whereas the SC
scheme is based on the so-called ‘‘perfectly disordered’’
random microstructures [Kröner, 1978]. Since these two
microstructures are different, their (exact) mechanical re-
sponse may differ, and this may introduce a bias in the
above comparisons. To evaluate this effect, we performed
simulations similar to those presented above, but for
the linear case, i.e., considering n = 1. In this case, the
linearization is no longer needed and all extensions of
the SC scheme reduce to the same SC estimate, so that
the effect of the microstructure alone can be isolated.
Results are not reported in detail here for the sake of
conciseness, but we find that FFT and SC predictions
provide very similar results, the discrepancy between them
being less than 12% for M = 1000 with regard to the
effective stress �seq/t0 and the overall heterogeneities
S(seq)/�seq and S( _eeq)/_�eeq. Note that for M = 1000 and n = 1,
the overall heterogeneities reach values similar to those for
M = 70 and n = 3.5, so that the local mechanical contrast of
these two polycrystals can be compared. This result indi-
cates that the discrepancies between the full-field and the
various SC extensions tested are essentially attributable to
the linearization procedure used in the mean-field approach.
[41] The TGT approach exhibits a response that departs

significantly from the reference full-field results, for almost
all results presented above. This model is therefore not well
suited for olivine, the main drawback being that it allows
the polycrystal to deform with only three independent slip
systems, thus significantly underestimating the effective
viscosity at large local anisotropy (large M). However, for
certain aspects, it behaves qualitatively in a similar way to
the Static bound, severely underestimating the stress het-
erogeneity associated with the intergranular interactions.
This limitation was formulated in the original paper of
Lebensohn and Tomé [1993] for highly nonlinear polycrys-
tals (large n). The present results indicate that the same
limitation holds also for low values of n, and large local
anisotropy M. Attempts to artificially soften the intergran-
ular interaction in this model by means of a scaling
coefficient [e.g., see Tommasi et al., 2000, equation (3)]
makes the predictions even closer to the Static bound, which
does not match the full-field solution either.
[42] The AFF extension shows much more reasonable

predictions than the TGT estimate, especially in terms of
predicting the stress and strain rate heterogeneities. Recall
that solving the AFF equations does not require additional
numerical cost compared to the TGT formulation. However,

concerning the effective behavior, the AFF model predicts
an overly rapid increase of �seq with the anisotropy param-
eter M, as compared to the full-field solution. For M > 20, it
is even observed that the predicted effective stress is larger
than that given by the VAR procedure which, it should be
recalled, provides a rigourous bound for the effective
potential ~U . Since it has been verified that the same feature
is observed also for a rigorously isotropic polycrystal
generated with many more crystal orientations than consid-
ered here, it can be concluded that the AFF extension
violates the VAR bound for M > 20. This provides, from
a theoretical point of view, a strong limit to the applicability
of the AFF procedure. Bound violation for the AFF
extension has also been reported for other polycrystalline
[Bornert and Ponte Castañeda, 1998; Bornert et al., 2001]
and composite [Masson et al., 2000; Ponte Castañeda,
2002b] materials.
[43] The two mean-field procedures that are based on

variational principles, namely VAR and SO estimations,
provide by far the best estimates of polycrystal behavior.
This is a remarkable result. Indeed, in spite of the compli-
cated shape of the stress and strain rate distributions occur-
ring in an actual polycrystal, as presented in section 3, these
approaches still accurately capture, both qualitatively and
quantitatively, the main features of the field statistics. This
success is attributed to the fact that the linearized compli-
ances depend explicitly on the second moment of the stress
[Ponte Castañeda, 1991, 2002b]. It is also worth mention-
ing that these procedures do not increase considerably the
numerical cost when compared to the AFF estimate (gen-
erally by a factor of about 20), so that subsequent coupling
with a large-scale convection model may still be tractable.
[44] When compared to the AFF and TGT model, the

VAR estimate not only significantly improves the estimation
of the effective behavior, but also gives excellent predic-
tions for the stress and strain rate field statistics. However, it
has been found to be slightly inferior to the SO estimate for
similar numerical cost. The SO estimate provides best
overall results, especially for the effective behavior. The
accuracy of this procedure has already been shown by Idiart
et al. [2006] and Rekik et al. [2006] in the context of
composite materials. The same conclusion has been drawn
by Lebensohn et al. [2004b] for cubic and hexagonal
viscoplastic polycrystals, and more recently by Lebensohn
et al. [2007] with some preliminary results for olivine. We
have extended these results by showing that excellent
estimates for olivine are obtained not only for the effective
behavior, but also for the field statistics. It must also be
recalled that, as already mentioned, the SO estimate used
here is an approximation of the original formulation of
Ponte Castañeda [2002a] (that requires the numerical
differentiation of the estimated effective stress potential),
motivated by a reduction of numerical cost. As shown by
Liu and Ponte Castañeda [2004], the original formulation is
slightly more accurate. Furthermore, some corrective terms
should be added to the solution obtained for the NPLCP in
order to consistently estimate the field statistics in the
nonlinear polycrystal of interest [Idiart and Ponte Castañeda,
2007a, 2007b]. Here, however, even with these simplifica-
tions, the SO estimate provides very good agreement with
the reference FFT solution. It thus makes an excellent model
for the micromechanical modeling of olivine.
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[45] Concerning the VAR estimate, the exponent k ’ 0.5
of the scaling law �seq/t0 1 Mk obtained for the effective
behavior of olivine is compatible with the finding of
Nebozhyn et al. [2000] in the context of hexagonal and
ionic polycrystals, where k has been shown to be indepen-
dent of the stress sensitivity n. This seems to indicate that
the scaling exponent does not depend on the crystal struc-
ture, but only on the number of independent slip systems.
Interestingly, the same exponent is also found here for the
SO estimate, as reported recently by Lebensohn et al.
[2007]. This seems to be a reasonable result since, beside
matching the full-field results, k ’ 0.5 is also the exponent
given by the linear SC scheme, from which all nonlinear
extensions derive.
[46] As already mentioned, besides the TGT model, the

Static bound and the kinematic model of Kaminski and Ribe
[2001] are often used to understand LPO development in
the upper mantle. Several strong limitations of the Static
model have already been discussed above, including the
severe underestimation of the effective stress. This may be
the reason why, using this model, Dawson and Wenk [2000]
observed that the viscosity of polycrystalline olivine is far
too low when inferred from single-crystal data. Figure 11
shows the distribution of _eeq

(r) for the static model. Clearly,
the strain rate does not show the correct distribution in the
different crystal orientations. For example, it gives the
highest values for crystals in orientations [101] and [110],
whereas the reference solution predicts the highest value
close to [111]. The kinematic model of Kaminski and Ribe
[2001], which is an extension of Ribe and Yu [1991], does
not account for intragranular stress and strain heterogene-
ities either. This model is based on a minimization of the
overall difference between the strain rate of each grain and
the macroscopic strain rate at the polycrystal level.
Although the formulation has been proposed to deal with
polycrystals with less than five independent slip systems,
the same principle, if appropriate, should be applicable to
more general cases, such as the polycrystal considered here
comprising five independent systems. In that case, the
solution of the minimization problem would be exactly

the Taylor bound, which has been shown to depart in many
ways from our reference results. We therefore anticipate that
estimations of microstructure evolution inferred from the
Static bound or from the kinematic model may not be
physically sound. In other words, even if the correct
mechanical and thermodynamical parameters are considered
at the grain scale, the predicted mechanical state at grain and
polycrystal levels may not be accurate.

6.2. Implications for Deformation Mechanisms

[47] The results obtained for the overall stress and strain
rate heterogeneities suggest the following comments. First
of all, the (suitably normalized) heterogeneities S(seq)/�seq
and S( _eeq)/ _�eeq obtained for olivine are significantly larger
than those reported by Lebensohn et al. [2004b] for cubic
(FCC) polycrystals, which have a value of about 0.5 for n =
10. This highlights the effect of the local anisotropy on the
local mechanical state of the polycrystal since, even at high
stress sensitivity, FCC grains exhibit a much smaller an-
isotropy than olivine. We have shown that in olivine, local
equivalent stress and strain rate can be significantly larger
than their macroscopic counterparts for large M values, as a
result of the intergranular interactions. Furthermore, our
results are also significantly larger than those obtained for
ice polycrystals (which exhibit a stress exponent n = 3
similar to olivine), for which values smaller than 1.5 have
been reported for M = 100 [Lebensohn et al., 2004b]. In
fact, even in the linear case (n = 1), it can be shown that
both S(seq)/�seq and S( _eeq)/ _�eeq increase more rapidly for
olivine (both growing approximately as M0.25) than for two
examples of hexagonal materials, namely, ice (two inde-
pendent slip systems) and zirconium (four independent
systems), which exhibit saturation (/ M0). Since olivine
has three independent systems, one may intuitively expect a
similar behavior, but this is not actually the case. Such a
feature could be associated with the geometry of the slip
systems in olivine. In any case, the large increase ofS values
withM reflects a growing localization of the stress and strain
rate in the polycrystal. We have seen in section 3.3 that
localization bands become steadily thinner and more intense
as M increases.
[48] In this study, we have considered a series of physically

relevant slip systems besides the artificial {111}h1�10i.
However, it turns out that several of them have a very
minor influence on olivine behavior, at least for the t0(k)
values considered here. This is the case of the hard slip
systems with Burger’s vector aligned with the a or c lattice
directions. Indeed, for M = 10, the three easiest slip systems
(i.e., (010)[100], (001)[100], and (010)[001]) contribute as
much as 92% to the total strain rate (SO estimation). For
M = 100, their contribution is larger than 97%. All other
secondary systems share the remaining part of the defor-
mation. Among them, {111}h1�10i, which somehow repre-
sents here the accommodation mechanisms in the real
material, has a very minor contribution to the overall strain,
but it is of primary importance for the micromechanical
modeling: its strength completely determines the overall
viscosity of olivine, this system providing the necessary
additional independent systems. However, concerning the
other secondary (hard) slip systems, namely (100)[001],
{011}[100], {031}[100], and {110}[001], it was found a

Figure 11. Inverse pole figures of the uniaxial compres-
sion axis showing the distribution of the normalized average
equivalent strain rate _eeq

(r)/ _�eeq in crystal axes for the Static
bound and M = 100.
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posteriori that they were unimportant, since they affect only
very weakly the effective viscosity, and their contribution to
the overall deformation is really small when compared to
the three softest systems.
[49] One of the issues remaining in the present work, and

probably not a simple one, is the replacement of the system
{111}h1�10i by a more realistic accommodation process, i.e.,
that has been observed in real specimens. Recall that, to the
best of our knowledge, accommodation processes based on
physical mechanisms (grain boundary sliding, diffusion,
dislocation climb,. . .) have not yet been successfully imple-
mented in micromechanical models. However, this will be
necessary in order to obtain realistic estimation of the
microstructure evolution (LPO, grain size,. . .) and the
associated viscoplastic anisotropy within the upper mantle.
First of all, it is worth noting that distinct accommodation
processes may be active in laboratory versus under in situ
conditions, owing to the huge difference in strain rates (�10
orders of magnitude). The interpretation of laboratory
experiments does not rule out the possible role of grain
boundary mechanisms [Karato et al., 1986]. According to
Hirth and Kohlstedt [2003], grain boundary sliding may
occur for small grain sizes at conditions corresponding to
the transition between diffusion and dislocation creep
regimes. Zhang et al. [2000] further report the strong
influence of dynamic recrystallization on the mechanical
behavior. In addition to the standard effect on LPO devel-
opment, recrystallization may reduce grain size and thus
promote diffusion creep, which could act as an effective
accommodation process. For comparison, grain boundary
migration, associated to diffusion processes, has been
shown to be efficient for the absorption of dislocations in
polar ices [Chapelle et al., 1998]. On the other hand, there is
abundant experimental evidence for the occurrence of climb
of edge dislocations which, among other implications,
would allow the formation of tilt boundaries [Goetze and
Kohlstedt, 1973]. Durham and Goetze [1977] and Durham
et al. [1977] have shown the importance of considering
climb in the interpretation of their mechanical tests on single
crystals, and further estimate that this mechanism could
contribute as much as 10–20% to the total deformation for
some specific crystal orientations (a value that seems rather
high). According to Bai et al. [1991] and Bai and Kohlstedt
[1992], climb may be the rate-controlling mechanism for
polycrystals, at least for certain specific experimental con-
ditions, but this mechanism should lead to stress sensitivity
higher than observed, n � 5 [Weertman, 1999]. Climb
seems to be more active at high temperature [Phakey et
al., 1972] and may occur at higher rate under wet conditions
[Mackwell et al., 1985]. These latter authors also suggest that
the weakening observed under wet conditions, as compared
to dry conditions, is due to enhancement of the rate of climb
of dislocations in the wet experiments. Finally, Hirth and
Kohlstedt [2003] and Mei and Kohlstedt [2000] argue that
climb is rate-limited by the pipe diffusion of Si, a mecha-
nism that would lead to a stress sensitivity n � 3.7, i.e.,
compatible with single crystal and polycrystal data. In any
case, it is not the aim of this paper to discuss whether creep
is controlled by dislocation glide (dislocations move a long
distance by glide in a slow and impeded manner and then
quickly a short distance by climb) or dislocation climb
(dislocations move unimpeded quickly a long distance by

glide and then slowly a short distance by climb). For this
task, theoretical micromechanical models are of no help,
since local deformation mechanisms are input for these
models. However, we want to stress that the resistance of
the accommodation process, whatever it may be, almost
entirely determines the flow stress (and thus the viscosity)
of olivine aggregates. Its precise experimental characteriza-
tion is thus crucial.
[50] The climb of edge dislocations with Burgers vector

parallel to [100] or [001] produces axial strain along the
crystal direction a and c, respectively. However, while the
edge component of the dislocation climbs, the screw com-
ponent has to cross-slip to maintain the integrity of the mix
dislocation on the new glide plane. This renders the strain
that can be accommodated by climb rather complex [Hartley,
2003]. However, in any case, since climb allows axial
deformation of the crystal lattice along the a or c direction,
it provides at least a fourth independent system. On the
other hand, four systems are sufficient to deform olivine
polycrystals. This can be demonstrated, as detailed by
Castelnau et al. [2008], by adding in the FFT (or equiva-
lently SO) model a new slip system allowing axial defor-
mation along a and c directions (but not along b), and
verifying that the effective stress �seq tends to a finite limit as
M!1. This last result is also consistent with the theoretical
findings of Nebozhyn et al. [2000] and Lebensohn et al.
[2007].
[51] Finally, for future work, one difficulty will be to

assess the relative resistance of accommodation mecha-
nisms since, again, they essentially determine the flow
stress of olivine polycrystals. Since these mechanisms only
contribute weakly to the overall deformation, as evidenced
above, the experimental characterization of their mechanical
response may be rather difficult.

6.3. LPO Development

[52] This study has been focused on the instantaneous
behavior rather than microstructural evolution at large
strain. However, it has been shown by Liu et al. [2003a,
2003b], and Lebensohn et al. [2007] that the VAR and SO
estimates can also provide an improved description of LPO
development in metallic alloys and in halite, when com-
pared to the TGT model. The observed improvement is due
to a more realistic distribution of stress and strain rate in the
polycrystal, as also observed here for olivine. However, it is
worth emphasizing that, within mean-field approaches, all
the treatments proposed for microstructure evolution are
based on the sole use of phase-average fields. Thus for
example, LPO evolution is classically related to the mean
shear-rate _g(k)

(r). However, it has been shown that the local
shear-rate _g(x) can differ significantly from its phase
average, owing to the strong intergranular interactions
occurring in olivine. The local rotation of the crystal lattice
must occur in response to the local mechanical state and not
to some average quantities. Neglecting the intragranular
heterogeneities of strain rate leads to LPO predictions that
are too pronounced at large strain, as has been reported in
the literature. Similar limitations also apply to the prediction
of dynamic recrystallization. In the model of Wenk and
Tomé [1999], for example, the stored energy is directly
related to the phase average value t(k)

(r). Recrystallization
is however a local process depending heavily on local
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energy gradients. It is therefore expected to be highly
sensitive to the intra- and intergranular heterogeneities.
Similar observations have been reported by Castelnau et
al. [2006] in the context of strain hardening, which have
shown that accounting for the intraphase heterogeneities
allows a better match between the SC model and the full-
field reference solution.
[53] Given that the SO model is capable of accurately

reproducing certain features of the full-field solutions,
including the distribution of intraphase stresses and strain
rates, it is anticipated that subsequent developments (cur-
rently under investigation) should also lead to more accurate
treatments of LPO evolution and dynamic recrystallization
in olivine polycrystals.

7. Concluding Remarks

[54] In this study, reference solutions for the rheological
behavior of olivine polycrystals have been generated by
means of the full-field FFT method. This method provides
the mechanical response of polycrystalline aggregates with
grain shape and arrangement following a random Voronoi
tesselation. The full-field results have been compared to
several mean-field approaches, all of them obtained by a
different nonlinear generalization of the Self-Consistent
scheme for viscoplasticity. The slip systems considered at
the grain scale, and their corresponding behavior, are
appropriate for creep of dry olivine at high temperature
and low pressure. For isotropic polycrystals, we find that the
TGT model, generally denoted ‘‘VPSC’’ in the geophysical
literature, provides results that differ significantly from the
reference solutions. On the other hand, excellent agreement
with the full-field solution has been obtained for the SO
method, not only for the effective behavior, but also for the
field statistics as a function of the crystal orientation. The
success of the SO method (which also applies, though to a
lesser degree, to the VAR method) can be attributed to a
more refined linearization procedure accounting explicitly
for the intraphase stress heterogeneities. The AFF estimate
provides results that are not as good as SO and VAR
methods, but that are, however, far better than TGT pre-
dictions, and at a comparable cost (to the latter).
[55] The computed stress and strain rate heterogeneities in

deforming olivine have been found to be considerable, i.e.,
larger than for standard cubic and hexagonal materials.
Furthermore, our results show that olivine cannot deform
with only three independent slip systems, as had been
previously suggested using the TGT model. However, we
find that four systems are sufficient, in agreement with the
theoretical predictions of Nebozhyn et al. [2000]. The
necessary additional accommodation mode would be pro-
vided through grain boundary mechanisms or by dislocation
climb as had often been reported in the literature. It is worth
emphasizing that the overall strength of olivine polycrystals
may thus be essentially determined by the resistance of this
additional mode.
[56] To extend our results to peridotites under thermome-

chanical conditions relevant for the upper mantle, it would
be necessary to deal with the effect of pyroxene, for which
relatively scarce mechanical data have been published, but
which is apparently stiffer than olivine while exhibiting
only one easy slip system. Furthermore, the presence of

liquid inclusions with very small or vanishing viscosity,
may have a large effect on the overall viscosity, e.g.,
beneath an oceanic spreading center or under volcanic arcs
in subduction zones. Given the relatively larger contrast in
mechanical properties of peridotites, compared to the poly-
crystals of pure olivine considered in this work, it is
expected that the SO model should give even larger
improvements in accuracy for rheological behavior and
texture development in these materials (over the standard
texturing models).
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Kröner, E. (1978), Self-consistent scheme and graded disorder in polycrys-
tal elasticity, J. Phys., 8, 2261–2267.

Lebensohn, R. A. (2001), N-site modeling of a 3D viscoplastic polycrystal
using fast Fourier transform, Acta Mater., 49, 2723–2737.
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Ponte Castañeda, P. (2002a), Second-order homogenization estimates for
nonlinear composites incorporating field fluctuations. part I: Theory,
J. Mech. Phys. Solids, 50, 737–757.
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